您的位置: 首页 > 农业专利 > 详情页

СПОСОБ ПРОГНОЗИРОВАНИЯ ИСХОДОВ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ
专利权人:
GOSUDARSTVENNOE BJUDZHETNOE OBRAZOVATELNOE UCHREZHDENIE VYSSHEGO PROFESSIONALNOGO OBRAZOVANIJA "MOSKOVSKIJ GOSUDARSTVENNYJ MEDIKO-STOMATOLOGICHESKIJ UNIVERSITET IMENI A.I. EVDOKIMOVA" MINISTERSTVA ZDR
发明人:
GENS GELENA PETROVNA,Генс Гелена Петровна,SULIMOV VLADIMIR BORISOVICH,Сулимов Владимир Борисович,MOISEEVA NATALJA IVANOVNA,Моисеева Наталья Ивановна,SULIMOV ALEKSEJ VLADIMIROVICH,Сулимов Алексей Влади
申请号:
RU2014125822/14
公开号:
RU0002563437C1
申请日:
2014.06.26
申请国别(地区):
RU
年份:
2015
代理人:
摘要:
FIELD: medicine.SUBSTANCE: naive-Bayesian networks with optimised number of assemblies are used to derive a maximum area under ROC curve. Significant parameters having an influence on the clinical outcome of breast cancer are determined. Each assembly, except for a base one, accords with one of the parameters of a patients data base. The base assemblies accord with final points specifying a disease progression or a lethal outcome in a pre-set time slot. To predict the disease progression, the following parameters are considered to be significant: age at the surgery, menstrual health, N category - lymph nodes, progesterone receptor expression, HER-2/neu receptor expression, pre-operative radiation treatment, neoadjuvant chemotherapy. The lethal outcome is predicted by the significant parameters as follows: menstrual health, T category - tumour size, N category - lymph nodes, biomolecular subtype, mRNA YB-1 expression level, pre-operative radiation treatment, hormone therapy. The data derived by constructing ROC curves are used to plot risk histograms of the clinical outcome of breast cancer connecting a conditional probability of the clinical outcome and an absolute probability of the respective clinical outcome. The conditional probability of the clinical outcome is divided into four ranges in accordance with four risk groups. The pre-taught Bayesian network is questioned with using the significant parameters of a specific patient. The conditional probability derived by questioning the Bayesian networks of the respective clinical outcome provides a basis to refer the patient to one of the risk group. The respective outcome - the disease progression or the lethal outcome - is predicted by the produced value with the use of the risk histograms of the absolute probability.EFFECT: more accurate prediction of the clinical outcome of breast cancer by optimising the Bayesian network by means of deriving the maximum area under ROC curve, facilitated doctors aim to make deci
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充