The present invention provides an optical measuring apparatus and an optical measuring method for being able to correct the influence of a superficial tissue to be able to accurately measure a degree of light absorption of a deep layer tissue such as a human body and fruits, and a storage medium that stores an optical measuring program. The optical measuring apparatus includes a probe, and the probe includes one light emitting diode and two photodiodes. In a configuration of the optical measuring apparatus, one of the photodiodes receives light which is emitted from the light emitting diode and transmitted through a superficial layer and a deep layer of a tissue, and the other photodiode receives light having a deep layer transmission distance different from that of the light received by one of the photodiodes. The light received by the other photodiode is also transmitted through the superficial layer and deep layer of the tissue. Based on intensity of the light received by each photodiode, a control unit computes a propagation constant in a medium through which the light propagates. An arithmetic expression is selected in accordance with an input fat thickness of the tissue, and an absorption coefficient of the light from a muscle tissue using the arithmetic expression based on the fat thickness and a spatial slope. A hemoglobin concentration and an oxygen saturation are obtained based on the obtained absorption coefficient of the light.