The present disclosure relates to a method for performing phosphorous-31 spectroscopic magnetic resonance fingerprinting (MRF). The method comprises performing a pulse sequence using a series of varied sequence blocks to a volume in a subject where the volume contains phosphate metabolites. A series of signal evolutions are acquired from the volume in the subject to form MRF data. The MRF data is then compared to simulated MRF signal to determine parameters associated with phosphate metabolites and the chemical exchange rates between these metabolites. These parameters and exchange rates can be used in diagnosing a metabolic disorder in a subject.