Flaviviruses represent an increasing global public health issue, with no prophylactic and therapeutic formulations currently available for many of them. The combination of factors such as evolutionary change, global warming and wide range of animal hosts suggest the possible occurrence of Flavivirus strains with greater distribution and human pathogenicity. There is, thus, a need for greater understanding of viral protein sequences that function in the human immune responses. The evolutionary diversity of the reported sequences of major flaviviruses, such as dengue virus, yellow fever virus, Japanese encephalitis virus, and West Nile virus were analyzed with a combination of experimental and bioinformatics methodologies. The analysis of all reported sequences revealed that these species-specific peptide tags are highly conserved and are potential T-cell epitopes due to correspondence to known or predicted epitopes. These peptide tags have direct relevance to the development of new-generation vaccines and diagnostic applications.