This invention provides tools and methods that prevent a cancer cell from growing and reproducing more cancer cells in a diseased animal. When growth ceases the body's immune defenses are enabled to attack and destroy these cells if the cancer cell itself has not initiated its own natural apoptotic self-destruction processes. The tools and methods of the invention obstruct the metabolic adaptions required to support cancer growth. By addressing the increased rates of metabolism characteristic of all rapidly reproducing cancer cells using chemical and/or physical nanotechnology to identify, segregate, isolate these hypermetabolizing cells, the body's immune system and other natural defenses are empowered to further isolate and eliminate the diseased cells. The extreme growth rates required for their rapid reproduction involve massively increased rates of the biochemical reactions supporting the cancerous growth. Each excess reaction produces extra heat and raises the internal cell's temperature and the tissue space immediate to the rapidly growing cells. This heat signature is used as a primary biomarker that enables binding of a nanoviral particle engineered to migrate to at attach at the target site at the site and prevent the cell from continued metabolism. Preferably, the nanoparticle not only binds and blocks external membrane receptors on the target cell, but incorporates into the rapidly metabolizing cells additional metabolic blocking agents to stop their growth. When cell growth and proliferation are stopped, the body's natural defenses are able to segregate and eliminate these cells. The massively increased rates of metabolic reactions characteristic of cancer cells also produce excess acid. The decreased pH is useful as a secondary or confirmatory marker for identifying these cancer cells.