您的位置: 首页 > 农业专利 > 详情页

基于EMD与WPD特征融合的癫痫发作前期预测方法
专利权人:
杭州电子科技大学
发明人:
曹九稳,胡丁寒
申请号:
CN201811590832.8
公开号:
CN109498000A
申请日:
2018.25.12
申请国别(地区):
CN
年份:
2019
代理人:
摘要:
本发明公开了一种基于EMD与WPD特征融合的癫痫发作前期预测方法。本发明步骤方法如下:步骤1、EEG信号的类别划分及样本切割,并对每个样本进行经验模态分解,再对分解得到的第一个本征模函数进行分析,从中提取基于FIMF的特征,包含能量、能量比和方差。步骤2、对步骤1中得到的第一个本征模函数进行四层小波包分解,得到最后一层16个结点的小波包系数,从中提取基于FIMF‑WPD的偏态和能量与特征。步骤3、融合基于FIMF与FIMF‑WPD的特征,并采用随机森林算法对融合后的特征训练分类器,构建癫痫发作前期的预测模型。本发明能够有效预警癫痫病发作前期的时间段,降低癫痫发作对患者造成的次生危害。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充