A system includes applying, to patient tissue, a first imaging sequence comprising first balanced gradient pulse trains and RF pulses, where phases of successive RF pulses in the first imaging sequence differ by a first pulse phase increment, detecting first signals emitted from the patient tissue in response to the first imaging sequence, and to generate a first image based on the first signals, applying, to the patient tissue, a second imaging sequence comprising second balanced gradient pulse trains and RF pulses, where phases of successive RF pulses in the second imaging sequence differ by a second pulse phase increment different from the first pulse phase increment, detecting second signals emitted from the patient tissue in response to the second imaging sequence, and to generate a second image based on the second signals, applying motion-correction processing to the first image to generate a first motion-corrected image, applying motion-correction processing to the second image to generate a second motion-corrected image, and generating a composite image based on the first motion-corrected image and the second motion-corrected image.