The present invention is directed to endoscopic structure illumination to provide simple, inexpensive 3D endoscopic technique to conduct high resolution 3D imagery for use in surgical guidance system. The present invention is directed to an FPP endoscopic imaging setup which provides a wide field of view (FOV) that addresses a quantitative depth information and can be integrated with commercially available endoscopes to provide tissue profilometry. Furthermore, by adapting a flexible camera calibration method for the 3D reconstruction technique in free space, the present invention provides an optimal fringe pattern for the inner tissue profile capturing within the endoscopic view and validate the method using both static and dynamic samples that exhibits a depth of field (DOF) of approximately 20 mm and a relative accuracy of 0.1% using a customized printed calibration board. The presented designs enable flexibility in controlling the deviated angle necessary for single scope integration using FPP method.