A pair of electronic shoe insoles aids an individual with peripheral neuropathy in walking without falling, despite the user having little or no sensation in her feet. Each insole uses a number of pressure sensors and provides various forms of biofeedback to the user such as auditory, haptic, and vibratory feedback which corresponds to the position of the user's foot on the ground. Vibration feedback is provided through vibration motors disposed against the soles of the user's feet at selected locations which correspond to locations of pressure sensors. This allows for direct neural stimulation of the sole of the foot at three biomechanically appropriate locations. Auditory and haptic feedback are provided through auxiliary devices that the user wears on appropriate parts of the body. Biofeedback transmitted through these mechanisms would correspond to change in foot position as detected by the pressure sensors. The shoe insoles may provide one or more of these forms of feedback, and other types of feedback may be provided by output devices as well. An embedded microcontroller wirelessly connected to a computer, tablet or phone permits an individual to monitor gait performance and to adjust numerous parameters of this biofeedback mechanism, such as time delays and strength of vibration or audio feedback. The device may also include a driving mode in which small variations of pressure on the gas pedal would be conveyed to the user through haptic and auditory feedback, thereby allowing the user to drive.