Apparatus and methods are disclosed for multi-spectral imaging of tissue to obtain information about the distribution of fluorophores and chromophores in the tissue. Using specific spectral bands for illumination and specific spectral bands for detection, the signal-to-noise ratio and information related to the distribution of specific fluorophores is enhanced as compared to UV photography, which uses a single RGB image. Furthermore, the chromophore distribution information derived from the multi-spectral absorption images can be used to correct the fluorescence measurements. The combined fluorescence, absorption, and broadband reflectance data can be analyzed for disease diagnosis and skin feature detection.