Multiple optical architectures based on photosensitive arrays are disclosed. The optical engines collect five dimensional data from the samples with three dimensional spatial information and temporal and spectral information simultaneously, in parallel from all channels, without optical scanning. The photosensitive arrays and/or last component of illumination system are in contact or close proximity of the sample surface. The application of optical engines to sensitive detection of species of interest in the complex reflecting and scattering matrix with the high concentration of interfering species is described. The optical engines are applicable to noninvasive, mobile monitoring of various species of interest in vivo and in vitro.