您的位置: 首页 > 农业专利 > 详情页

一种基于矩阵变量高斯模型的运动想象脑电特征提取方法
专利权人:
杭州电子科技大学
发明人:
祝磊,杨君婷,胡奇峰
申请号:
CN202010109597.9
公开号:
申请日:
2020.22.02
申请国别(地区):
CN
年份:
2020
代理人:
摘要:
本发明公开了一种基于矩阵变量高斯模型的运动想象脑电特征提取方法。现有技术中运动想象脑电特征提取方法精度不足。本发明如下:一、进行脑电测试建立样本集。二、将训练样本集x进行滤波器组共空间模态运算;三、构建类间权重矩阵和类内权重矩阵;四、计算类内空间协方差矩阵和类内频率协方差矩阵;五、拆分类间散布矩阵。六、建立投影矩阵。七、计算特征数对;八、获取用于训练的d维特征。九、训练SVM模型。十、对被测人员的运动想象进行检测和识别。常规处理方法忽略了脑电信号中的空间信息。本发明使用矩阵化降维处理,并引入了矩阵变量高斯模型的思想,进一步提高了空间信息的利用率。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充