您的位置: 首页 > 农业专利 > 详情页

LEARNING-ASSISTED MULTI-MODALITY DIELECTRIC IMAGING
专利权人:
UNIVERSITY OF SOUTHERN CALIFORNIA
发明人:
GUANBO CHEN,MAHTA MOGHADDAM,PRATIK SHAH,JOHN STANG
申请号:
US16839853
公开号:
US20200320752A1
申请日:
2020.04.03
申请国别(地区):
US
年份:
2020
代理人:
摘要:
A Convolutional Neural Network (CNN) assisted dielectric imaging method is provided. The method used CNN to incorporate the abundant image information from Magnetic Resonance (MR) images into the inverse scattering model-based microwave imaging process and generate high-fidelity dielectric images. A CNN is designed and trained to learn the complex mapping function from MR T1 images to dielectric images. Once trained, the new patients' MR T1 images are fed into the CNN to generate predicted dielectric images, which are used as the starting image for the microwave inverse scattering imaging. The CNN-predicted dielectric image significantly reduces the non-linearity and ill-posedness of the inverse scattering problem. The application of the proposed method to recover human brain dielectric images at 4 mm and 2 mm resolution with single-frequency and multi-frequency microwave measurements is provided.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充