Provided is a machine learning device and a machine learning program that can improve the accuracy of personal identification, emotion recognition, and physical condition estimation. The face feature calculation unit (31) calculates the face feature from the face image, and the face individual specifying unit (42) compares the face feature with the face feature for individual specification in the label DB (56) to specify the individual. When the difference between the face feature value calculated by the face feature value calculation unit (31) and the face feature value for personal identification in the label DB (56) is larger than a predetermined value, the face feature value calculation unit (31) calculates the difference. The face feature quantity in the label DB (56) is updated with the obtained face feature quantity. When the face feature amount calculating unit (31) calculates a similar face feature amount for a predetermined time, a record of the emotion of the specified individual including the feature amount similar to the face feature amount is stored in the label DB (56). If not, the record of the individual including the emotion obtained by the inquiry and the facial feature is added to the label DB (56).個人特定や感情認識、体調推測の精度を向上させることができる機械学習装置および機械学習プログラムを提供する。顔画像から顔特徴量算出部(31)が顔特徴量を算出し、顔個人特定部(42)がラベルDB(56)にある個人特定用の顔特徴量と比較して個人を特定する。顔特徴量算出部(31)が算出した顔特徴量とラベルDB(56)にある個人特定用の顔特徴量との差が所定の値より大きいときには、顔特徴量算出部(31)が算出した顔特徴量でラベルDB(56)にある顔特徴量を更新する。所定の時間のあいだ類似する顔特徴量を顔特徴量算出部(31)が算出する場合で、当該顔特徴量に類似する特徴量を含む特定された個人の感情のレコードがラベルDB(56)に存在しなければ、問い合わせで得た感情と当該顔特徴量とを含む当該個人のレコードをラベルDB(56)に追加する。