The present invention involves a test subject performing a sit-to-stand operation while wearing a device (SU) that contains an acceleration sensor (11) on the front of the chest. The present invention derives a muscular strength index representing the muscular strength of a human body by obtaining maximum acceleration value data from a signal expressing the size of an acceleration vector comprising a tri-axial component in detected acceleration, and using the maximum acceleration value data and the muscle mass or body fat mass of the text subject. Meanwhile, the present invention is further provided with the ability to derive a physical activity amount from the acceleration detection results, and on the basis of the activity amount (ACT) during a prescribed activity target period and the muscular strength index at the start and end times of the activity target period, obtains an activity efficiency index that corresponds to changes in the muscular strength index in response to the amount of activity.