您的位置: 首页 > 农业专利 > 详情页

一种基于多分类器强化学习的心肌梗塞检测方法
专利权人:
杭州电子科技大学
发明人:
邓木清,张壮,曹九稳
申请号:
CN201911030739.6
公开号:
CN110693489A
申请日:
2019.28.10
申请国别(地区):
CN
年份:
2020
代理人:
摘要:
本发明公开了一种基于多分类器强化学习的心肌梗塞检测方法。本发明步骤:1、对原始常规12导联心电图进行预处理、R波定位、获取HRV信号;2、对每个导联HRV信号分别提取时域、频域、非线性动力学特征序列;3、利用强化学习让分类器模型不断进行学习,调整模型参数,将不同动作对应的Q值作为一个序列输出,最终训练得到三个主分类器模型,每个主分类器模型里面根据强化学习得分机制产生若干BP分类器;4、利用强化学习训练得到的三个主分类器对测试样本进行分类识别,获得三个测试结果;5、利用投票法则进行最终投票,获得识别结果。本发明引入强化学习机制,能够更有效准确地快速识别检测,能够为心肌梗塞的检测与预防提供有效便利的工具。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充