A medical image segmentation method includes: step 1, initialize of the number of clusters and determine the initial values of the cluster centroids; step 2, calculate a Hausdorff distance between each cluster centroid and each pixel in the image; step 3, calculate a membership function of each pixel based on the Hausdorff distance and a Euclid distance between the cluster centroids and each pixel; step 4, calculate an objective function, cluster the pixels of the image based on the updated membership function, and update the centroid value; and repeating step 2-4, until a difference between two objective function values is less than a threshold value. Then the membership function from the last iteration is a final segmentation.