A method for evaluation of renal perfusion with power Doppler ultrasonography is disclosed in the present invention. Serial renal vascular images at different vascular areas including the whole vascular tree, interlobar, arcuate, and interlobular vessels were captured. Imaging processing software was designed to analyze the changes of power Doppler intensity of colored pixels within regions of interest (ROI). Power Doppler Vascularity index (PDVI) has been defined as the percentage of vascular perfusion within a region of interest (ROI). The renal vascular perfusion index (RVPI) is defined as the maximal power Doppler vascular index divided by minimal power Doppler vascular index (PDVImax/PDVImin) among the serial images. The mean of weighted power Doppler vascular index (WPDVImean) is defined as the average of the intensity of color pixels among the ROI within the serial images. By using the RVPI and WPDVImean, a more dynamic sense of vascular perfusion and a novel approach for the evaluation of renal vascular function in clinical practice can be provided.