This invention is of particular use to patients with Diabetes Mellitus. It uses alkyl analogs of the methyl pyruvate (MP) family to provide energy and improve insulin and glucose homeostasis via accelerated intracellular delivery of protons, pyruvate and ATP from each MP. The energy upregulates cellular cross talk and networking resulting in a surge of ATP enabling NADH (via glycolysis) that enables pancreatic islet cells to obtain increased ATP allowing increased insulin manufacture. This process improves cellular respiration, expedites protein, lipid and hormone manufacture. The increased energy also enables telomeres and delays Hayflick limit. Instead of cellular repair, silence, or apoptosis, energy is allocated for cell/organ function. This invention curbs inflammation and ROS by idealizing cellular respiration and diminishing hyperglycemia. In turn a reduction of advanced glycation end products (AGEs), lessened target RNA and nucleic acid toxins, i.e., diminished HbA1c occurs. By decreased drain of cellular energy, genomic function improves.