一种基于轻量化深度学习网路的手部穴位识别方法
- 专利权人:
- 发明人:
- 许紫妍,李旦,尹建君
- 申请号:
- CN202211329098.6
- 公开号:
- CN115634147A
- 申请日:
- 2022.10.27
- 申请国别(地区):
- CN
- 年份:
- 2023
- 代理人:
- 摘要:
- 本发明公开了一种基于轻量化深度学习网路的手部穴位识别方法;该方法包括以下步骤:S1:图像采集,实时采集手部数据;S2:基于传统图像处理的方法,识别出手掌区域以及手心区域;S3:将识别出的手掌区域数据输入到基于深度学习的手部穴位识别模型中,手部穴位识别模型总共输出16个手部穴位点以及2个手部穴位区;其中:所述基于深度学习的手部穴位识别模型为基于mobilenetv3的超轻量化模型,其通过对主干网络mobilenetv3模型进行知识蒸馏和量化处理得到。本发明基于轻量化深度学习网络和几何空间计算等方法,最终得到手部的各个手部关键点穴位点,相较于传统穴位识别方法,在精度和速度上有显著的提升。
- 来源网站:
- 中国工程科技知识中心