Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g., by expanding or contracting) portions of a given biopotential signal, in the frequency domain, the numeric- based operation gives emphasis or de-emphasis to certain measured frequencies of the biopotential signals, which, when coupled with machine learning, facilitates improved diagnostics of certain pathologies.