Unique fusion genes are disclosed which are useful for transforming a wide range of plants, and when used in tandem, result in a significant alteration of the plant phenotype with respect to tolerance to the stress from prolonged storage under either dark or cold conditions, or a combination of cold and dark conditions. With intact plants such as transplants, plants harboring these genes maintain the ability of recover and grow normally after returned to normal growth conditions. With isolated plant parts, such as cut flowers or foliage or fruits & vegetables, leaf tissue maintains color quality and cells maintain structural integrity during prolonged storage. Since the transgenes are only activated in response to cold temperature, normal plant growth, development, and function is not affected. The gene constructs include (1) a cold-regulated gene (COR15a) promoter to drive an ipt coding sequence that expresses IPT in the tissues of plants or plant parts exposed to a short cold induction period; and (2) a cold-regulated gene (COR15a) promoter to drive a (FAD7) coding sequence that expresses a fatty acid desaturase enzyme in the tissues of plants or plant parts exposed to a short cold induction period. Exemplary transformations include chrysanthemum, tobacco, flowering tobacco, and petunia. Double transgenic tobacco, and flowering tobacco both exhibited increased survival under prolonged cold and dark storage conditions.