一种基于卷积神经网络算法监测颅内压的方法
- 专利权人:
- 李军
- 发明人:
- 李军,白磊
- 申请号:
- CN201610830420.1
- 公开号:
- CN106983504B
- 申请日:
- 2016.21.09
- 申请国别(地区):
- CN
- 年份:
- 2019
- 代理人:
- 摘要:
- 本发明公开了一种基于卷积神经网络算法监测颅内压的方法,其包括S1:通过FVEP无创颅内压监测技术检测实际的颅内压值,并形成FVEP波形图;S2:构建卷积神经网络系统,并以步骤S1实际测得的颅内压值为结果,不断训练其学习不同颅内压值对应的实际FVEP波形图,并综合考虑各种影响颅内压的外在因素共同作为该卷积神经网络系统的输入;S3:通过卷积神经网络系统进行FVEP波形图的匹配和识别分析,实现对FVEP波形的有效识别。本发明用卷积神经网络算法对测得的FVEP波形图进行图形识别,并不断自我学习优化,实现有效的颅内压预测。
- 来源网站:
- 中国工程科技知识中心