The invention relates to nanotechnology. The carbon-bearing nanoparticle consists of a cubical carbon monocrystal nucleus, the size of which is equal to or less than 4 nm, and a monocrystalline carbon shell having an SP3 structure and a thickness ranging from 0.19 to 0.2 nm. The method for producing carbon-bearing NSP3 nanoparticles involves exploding a charge of blasting material having a negative oxygen balance. The charge is preliminary surrounded by ice with a temperature less than minus 25° C. The ratio of the mass of the ice to the mass of the explosive charge is of 1:4-6. The suspension of carbon-bearing nanoparticles produced as a result of explosion is chemically purified. The thus produced suspension is disaggregated by being repeatedly frozen to a temperature lower than the liquid hydrogen boiling point. Once the suspension has been disaggregated, it is exposed to the action of ultrasonic waves with a frequency of 18-27 Hz for 5-18 minutes. The blasting material consists of a trinitrotoluene and cyclonite mixture and is in the form a cylinder-shaped plastic mixture with a ratio of the cylinder diameter to the height thereof of 1:6. The method for chemically purifying the suspension involves removing metal impurities from the suspension by heating it for 5-7 hours in a 10-25% nitric acid solution.