A method and device for non-invasive monitoring of the temperature of the retina and the retinal pigment epithelium inside the eye, particularly during heating of the bottom of the eye, wherein alternating probing short-duration pulses of light, one at wavelength close to the absorption maximum of the photoreceptor cell type and the other at wavelength in the near-infrared region, are directed at the retinal tissue at appropriate time intervals.Photoreceptor cell electrical signals, photoresponses, are recorded using electroretinography (ERG) and the changes in retinal temperature are determined from changes in photoresponse kinetics and changes in photoreceptor sensitivity to the stimuli. The method is especially applicable at temperatures up to 45° C. for humans and for other animals.