The system provides information to facilitate efficient optimization of programmer settings for cardiac pacemakers. It simultaneously measures a patient's electrogram (EGM) and peripheral blood pressure (or volumetric displacement) waveform in order to calculate, in real-time and non-invasively, a value correlated to the pre-ejection time (PET) and, optionally, ejection duration (ED) for the patient's left ventricle. The peripheral pulse waveform can be monitored with a wrist mounted tonometer, or a suitable brachial cuff device. The time difference between the occurrence of the first detected positive or negative peak in a patient's LV electrogram trace (EGM) and the foot of the pulse on the peripheral pulse waveform is defined as a surrogate pre-ejection time interval (SPET). Data including the electrogram and peripheral pulse trace, as well as the calculated, surrogate pre-ejection time interval (SPET) for each heart beat and trending is displayed on a computer monitor, thereby allowing a physician or nurse to quickly optimize PET for the patient and adjust programmer settings for an implanted pacemaker.