An indirect calorimeter estimates nutritional caloric intake by periodically monitoring weight and sensing physical exercise (i.e., physiological data and/or motion data related to physical exertion), which can then be used in a calorimetry model derived from regression analysis of a population (e.g., linear regression, feed-forward neural network, Gaussian process, boosted regression tree, etc.). A strap-on user device for tracking exercise can detect one or more of heart rate, body temperature, skin resistance, motion/acceleration sensing (e.g., pedometer, accelerometer), velocity sensing (e.g., global positioning system (GPS)), and an intelligent, integrated exercise machine (e.g., treadmill, exercise bike, etc.). To gain further fidelity, the user can fine-tune the estimate by undergoing a journal-based routine for a relatively short period of time or clinical calorimetry measurement (e.g., respiratory calorimeter), thereby providing a baseline for resting or exercising metabolic rate.