A total hip surface replacement implant, comprising a femur component and an acetabular cup component, wherein the femur component is in a half-spherical shell shape and is formed by polyether ether ketone (PEEK) or derivatives thereof; the shape of the acetabular cup component matches that of the femur component, and the acetabular cup component is tightly attached to an outer surface of the half-spherical shell of the femur component; the acetabular cup component is formed by ultrahigh molecular weight polyethylene; or the femur component can be formed by ultrahigh molecular weight polyethylene, and meanwhile the acetabular cup component is formed by polyether ether ketone (PEEK) or derivatives thereof. The total hip surface replacement implant employs friction combination between organic polymers so as to reduce material toxicity against a living body; the rigidity of the organic polymers more matches that of a natural bone of a human body, thereby reducing implant wearing in a usage process; and by means of an optimization design of a positioning column on a femur condyle, the clinic problems of early neck-of-femur fracture and medium-and-long term bone resorption are avoided.