您的位置: 首页 > 院士专题 > 专题 > 详情页

Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9

通过CRISPR/Cas9工程化水稻品种,增强对稻瘟病和白叶枯病的抗性

关键词:
来源:
PLANT BIOTECHNOLOGY JOURNAL
来源地址:
//agri.nais.net.cn/topic/downloadFile/fca774b4-1009-4704-98e9-f26beeb4e387
类型:
学术文献
语种:
英语
原文发布日期:
2021-12-04
摘要:
Rice blast and bacterial blight represent two of major diseases having devastating impact on the yield of rice in most rice-growing countries. Developments of resistant cultivars are the most economic and effective strategy to control these diseases. Here, we used CRISPR/Cas9-mediated gene editing to rapidly install mutations in three known broad-spectrum blast-resistant genes, Bsr-d1, Pi21 and ERF922, in an indica thermosensitive genic male sterile (TGMS) rice line Longke638S (LK638S). We obtained transgene-free homozygous single or triple mutants in T-1 generations. While all single and triple mutants showed increased resistance to rice blast compared with wild type, the erf922 mutants displayed the strongest blast resistance similar with triple mutants. Surprisingly, we found that Pi21 or ERF922 single mutants conferred enhanced resistance to most of tested bacterial blight. Both resistances in mutants were attribute to the up-regulation of SA- and JA-pathway associated genes. Moreover, phenotypic analysis of these single mutants in paddy fields revealed that there were no trade-offs between resistances and main agricultural traits. Together, our study provides a rapid and effective way to generate rice varieties with resistance to both rice blast and bacterial blight.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充