Research Data Management Commitment Drivers: An Analysis of Practices, Training, Policies, Infrastructure, and Motivation in Global Agricultural Science
研究数据管理承诺驱动因素:全球农业科学中的实践、培训、政策、基础设施和动机分析
- 关键词:
- 来源:
- ICARDA
- 类型:
- 学术文献
- 语种:
- 英语
- 原文发布日期:
- 2022-11-11
- 摘要:
- Scientists largely acknowledge the value of research data management (RDM) to enable reproducibility and reuse. But, RDM practices are not sufficiently rewarded within the traditional academic reputation economy. Recent work showed that emerging RDM tools can offer new incentives and rewards. But, the design of such platforms and scientists' commitment to RDM is contingent on additional factors, including policies, training, and several types of personal motivation. To date, studies focused on investigating single or few of those RDM components within a given environment. In contrast, we conducted three studies within a global agricultural science organization, to provide a more complete account of RDM commitment drivers: one survey study (n = 23) and two qualitative explorations of regulatory frameworks (n = 17), as well as motivation, infrastructure, and training components (n = 13). Based on the sum of findings, we contribute to the triangulation of a recent RDM commitment evolution model. In particular, we find that strong support and suitable tools help develop RDM commitment, while policy conflicts, unclear data standards, and multi-platform sharing, lead to unexpected negotiation processes. We expect that these findings will help to better understand RDM commitment drivers, refine the RDM commitment evolution model, and benefit its application in science.
- 所属专题:
- 62