The Quest for the Sli Locus
寻找Sli 位点
- 关键词:
- 来源:
- Potato Research
- 类型:
- 学术文献
- 语种:
- 英语
- 原文发布日期:
- 2024-09-13
- 摘要:
- Genetic gain in potato breeding is limited by the heterozygous tetraploid genome of cultivated potato. Recent efforts to breed potato at the diploid level promise to improve genetic gain and allow more straightforward genetics and introgression breeding. Diploid F1 hybrid potato breeding relies on the ability to create diploid inbred lines via repeated self-fertilization. However, self-fertilization of diploid potato is hampered by a gametophytic self-incompatibility system encoded by the S-locus that prevents fertilization by self-pollen. Nonetheless, self-compatible diploid potato genotypes exist and have been used to create inbred lines. The S-locus inhibitor (Sli) gene is a dominant gene that provides strong self-compatibility in diploid potato and was previously mapped to Chromosome 12. While the Sli gene has already been identified and characterized, the most tedious challenge was to develop the optimal phenotyping methods and genetic populations preceding the cloning of this gene. To this end, we developed an effective phenotyping protocol to identify suitable parents and create diploid populations segregating for Sli. We show that an accurate phenotyping method is crucial to discriminate between confounding fertility factors and self-compatibility. In addition, we found that the Sli locus shows extreme segregation distortion on Chromosome 12. Finally, we used these insights to develop three F1 populations that segregate for Sli, which we later used for the identification of the Sli gene.
- 所属专题:
- 177