您的位置: 首页 > 院士专题 > 专题 > 详情页

Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity

机器学习辅助酰胺酶催化对映选择性预测和改进对映选择性变异体的合理设计

关键词:
来源:
Nature Communications
来源地址:
https://www.nature.com/articles/s41467-024-53048-0
类型:
学术文献
语种:
英语
原文发布日期:
2024-10-10
摘要:
Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充