The grain Food-Energy-Water nexus in China: Benchmarking sustainability with generalized data envelopment analysis
中国粮食-能源-水关系:基于广义数据包络分析的可持续性标准管理
- 关键词:
- 来源:
- Science of The Total Environment
- 类型:
- 学术文献
- 语种:
- 英语
- 原文发布日期:
- 2023-08-20
- 摘要:
- Food insecurity can be considered as a significant cause to instability in some regions around the world. Grain production utilizes a multiple of inputs, such as: water resources, fertilizers, pesticides, energy, machinery, and labor. In China, grain production has led to huge irrigation water use, non-point source pollution, and greenhouse gas emissions. It is necessary to emphasize the synergy between food production and ecological environment. In this study, a grain Food-Energy-Water nexus is delivered and an eco-efficiency sustainability evaluation metric is introduced, Sustainability of Grain Inputs (SGI), for investigating the sustainability of water and energy use in grain production across China. SGI is constructed by using generalized data envelopment analysis to comprehensively incorporate differences of water and energy inputs (including indirect energy use contained in agricultural chemicals such as fertilizers, pesticides, agricultural film, and direct energy use such as the electricity and diesel used for irrigation and agricultural machinery) in different regions across China. Both water and energy are considered by the new metric at the same time, which is built on the single resources metrices that are often used in the sustainability literature. This study evaluates the water and energy use of wheat and corn production in China. Wheat production uses water and energy sustainably in Sichuan, Shandong, and Henan; Corn production has the highest combined sustainability index in Shandong, Jilin, Liaoning, and Henan. In these areas, the grain sown area could be increased. However, wheat production in Inner Mongolia and corn production in Xinjiang rely on unsustainable water and energy inputs, and their grain sown areas could be reduced. The SGI is a tool that researchers and policy makers can use to better quantify the sustainability of water and energy inputs to grain production. It facilitates formulating policies about water saving and carbon emission reduce of grain production.
- 所属专题:
- 62