您的位置: 首页 > 院士专题 > 专题 > 详情页

A Golgi vesicle-membrane-localized cytochrome B561 regulates ascorbic acid regeneration and confers Verticillium wilt resistance in cotton

高尔基体囊泡膜定位的细胞色素B561调控抗坏血酸再生和棉花黄萎病抗性

关键词:
来源:
PLANT JOURNAL
来源地址:
https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17162
类型:
学术文献
语种:
英语
原文发布日期:
2024-11-27
摘要:
Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (H2O2) homeostasis and plant defense remains largely unknown. Here, we identified a Golgi vesicle-membrane-localized cytochrome B561 (CytB561) encoding gene, GhB561-11, involved in AsA regeneration and plant resistance to Verticillium dahliae in cotton. GhB561-11 was significantly downregulated upon V. dahliae attack. Knocking down GhB561-11 greatly enhanced cotton resistance to V. dahliae. We found that suppressing GhB561-11 inhibited the AsA regeneration, elevated the basal level of H2O2, and enhanced the plant defense against V. dahliae. Further investigation revealed that GhB561-11 interacted with the lipid droplet-associated protein GhLDAP3 to collectively regulate the AsA regeneration. Simultaneously silencing GhB561-11 and GhLDAP3 significantly elevated the H2O2 contents and dramatically improved the Verticillium wilt resistance in cotton. The study broadens our insights into the functional roles of CytB561 in regulating AsA regeneration and H2O2 homeostasis. It also provides a strategy by downregulating GhB561-11 to enhance Verticillium wilt resistance in cotton breeding programs.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充