您的位置: 首页 > 院士专题 > 专题 > 详情页

基于深度强化学习的农田节点数据无人机采集方法

关键词:
来源:
CNKI:农业工程学报
来源地址:
https://webvpn.hainanu.edu.cn/https/77726476706e69737468656265737421fbf952d2243e635930068cb8/kcms2/article/abstract?v=lu7GCbFnkC1fyz1NzB4H1sZVNqbA4ZCM7Z0s1YDkYRNmwBN9RBfN91xo71piu0Vx3Ioj72xhZ4lidlcFbTSbTxty5nx2S8V0gwxGO6j0b99ppbCwQlTWIA==&uniplatform=NZKPT
类型:
学术文献
语种:
中文
原文发布日期:
2022-11-23
摘要:
利用无人机采集农田传感器节点数据,可避免网络节点间多次转发数据造成节点电量耗尽,近网关节点过早死亡及网络生命周期缩短等问题。由于相邻传感器数据可能存在冗余、无人机可同时覆盖多个节点进行采集等特点,该研究针对冗余覆盖下部分节点数据采集和全节点数据采集,对无人机数据采集的路线及方案进行优化,以减轻无人机能耗,缩短任务完成时间。在冗余覆盖下部分节点数据采集场景中,通过竞争双重深度Q网络算法(DuelingDoubleDeepQ Network,DDDQN)优化无人机节点选择及采集顺序,使采集的数据满足覆盖率要求的同时无人机能效最优。仿真结果表明,该算法在满足相同感知覆盖率要求下,较深度Q网络(Deep Q Network,DQN)算法的飞行距离缩短了1.21 km,能耗减少27.9%。在全节点数据采集场景中,采用两级深度强化学习联合(Double Deep Reinforcement Learning,DDRL)方法对无人机的悬停位置和顺序进行优化,使无人机完成数据采集任务时的总能耗最小。仿真结果表明,单节点数据量在160 kB以下时,在不同节点个数及无人机飞行速度下,该方法比经典基于粒子群优化的旅行商问题(ParticleSwarm Optimization-Traveling Salesman Problem,PSO-TSP)算法和最小化能量飞行控制(Minimized Energy Flight Control,MEFC)算法的总能耗最少节约6.3%。田间试验结果表明,相比PSO-TSP算法,基于DDRL的数据采集方法的无人机总能耗降低11.5%。研究结构可为无人机大田无线传感器节点数据采集提供参考。 
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充