您的位置:
首页
>
院士专题
>
专题
> 详情页
DeepMind发布用于新型蛋白质设计的AlphaProteo
- 关键词:
- 来源:
- Google DeepMind
- 全文链接:
- //agri.nais.net.cn/topic/downloadFile/6fa92a6d-ef68-4052-b6c4-3d3aa818a37a
- 来源地址:
- https://deepmind.google/discover/blog/alphaproteo-generates-novel-proteins-for-biology-and-health-research/?utm_source=x&utm_medium=&utm_campaign=gdm&utm_content=
- 资源所属:
- 农业生物技术专题
- 类型:
- 前沿资讯
- 语种:
- 英语
- 原文发布日期:
- 2024-09-05
- 摘要:
- 2024年9月5日,Google Deepmind团队上线最新论文“De novo design of high-affinity protein binders with AlphaProteo”推出了一种用于设计「与目标分子结合更紧密」的新型蛋白质的 AI 系统 AlphaProteo。在测试的 7 种靶蛋白上,AlphaProteo 的实验成功率更高,在湿实验室中测试中,9% 到 88% 候选分子成功结合,这比其他方法高出 5 到 100 倍。而且,比现有最佳方法的结合亲和力高出 3 到 300 倍。仅需一轮中等通量筛选且无需进一步优化,AlphaProteo 便可生成适用于多种应用的「即用型」结合剂。它可以帮助科学家更好地了解生物系统如何运作,节省研究时间,推进药物设计等等。在论文中,DeepMind 团队介绍了 AlphaProteo 蛋白质设计系统,并表明它可以设计从头蛋白质结合蛋白,该系统具有以下优势:1、高成功率:通过筛选数十种设计候选物可以获得稳定、高表达和特异性的结合物,从而无需使用高通量方法。2、高亲和力:对于除一个目标之外的每个测试目标,最佳结合剂具有亚纳摩尔或低纳摩尔结合亲和力(KD),从而最大限度地减少了下游亲和力优化所需的劳动力。3、整体优势:使用单一设计方法,无需复杂的人工干预,即可成功获得针对一系列具有不同结构和生化特性的靶标的结合剂。能够与靶蛋白紧密结合的蛋白质结合剂很难设计。传统方法耗时巨大,需要多轮大量的实验室工作。在创建结合剂后,它们还需要进行大量额外的实验从而优化结合亲和性。AlphaProteo 经过蛋白质数据库 (PDB) 中的大量蛋白质数据和 AlphaFold 中的 1 亿多条预测结构的训练,已经了解了分子相互结合的无数方式。给定目标分子的结构和该分子上的一组首选结合位置,AlphaProteo 会生成一个候选蛋白质,该蛋白质在这些位置与目标结合。为了测试 AlphaProteo,研究人员设计了针对各种靶蛋白的结合剂,包括两种与感染有关的病毒蛋白 BHRF1 和 SARS-CoV-2 刺突蛋白受体结合域 SC2RBD,以及五种与癌症、炎症和自身免疫性疾病有关的蛋白 IL-7Rɑ、PD-L1、TrkA、IL-17A 和 VEGF-A。AlphaProteo 系统具有极具竞争力的结合成功率和一流的结合强度。对于七个靶点,AlphaProteo 在计算机模拟中生成候选蛋白,这些蛋白在实验测试时与目标蛋白紧密结合。对于一个特定靶标,即病毒蛋白 BHRF1,在 Google DeepMind Wet Lab 中进行测试时,88% 候选分子成功结合。根据测试的靶标,AlphaProteo 结合剂的结合力平均比现有最佳设计方法强 10 倍。对于另一个靶标 TrkA,新结合剂甚至比经过多轮实验优化的针对该靶标的最佳先前设计结合剂更强。与其他设计方法相比,AlphaProteo 针对七种目标蛋白的实验体外成功率。成功率越高,意味着需要测试的设计越少,才能找到成功的结合体。研究人员除了在其湿实验室中进行计算机验证和测试 AlphaProteo 之外,还聘请了 Francis Crick 研究所的 Peter Cherepanov、Katie Bentley 和 David LV Bauer 研究小组来验证其蛋白质结合剂。在不同的实验中,他们深入研究了一些更强的 SC2RBD 和 VEGF-A 结合剂。研究小组证实,这些结合剂的结合相互作用确实与 AlphaProteo 所预测的相似。此外,研究小组还证实了这些结合剂具有有用的生物学功能。例如,一些 SC2RBD 结合剂被证明可以防止 SARS-CoV-2 及其某些变体感染细胞。AlphaProteo 的性能表明,它可以大大减少涉及广泛应用的蛋白质结合剂的初始实验所需的时间。然而,该人工智能系统有局限性,因为它无法针对第 8 个靶点 TNFɑ(一种与类风湿性关节炎等自身免疫性疾病相关的蛋白质)设计成功的结合物。研究人员选择 TNFɑ 来挑战 AlphaProteo,因为计算分析表明设计结合物非常困难。接下来,该团队将继续改进和扩展 AlphaProteo 的功能,最终目标是解决这些具有挑战性的靶点。实现强结合通常只是设计可能对实际应用有用的蛋白质的第一步,在研发过程中还有更多的生物工程障碍需要克服。蛋白质设计是一项快速发展的技术,在各个领域都具有巨大的科学进步潜力,从了解导致疾病的因素,到加速病毒爆发的诊断测试开发,支持更可持续的制造过程,甚至清除环境中的污染物。未来,DeepMind 将与科学界合作,利用 AlphaProteo 解决有影响力的生物学问题并了解其局限性。他们还一直在 Isomorphic Labs 探索其药物设计应用,并对未来的发展感到兴奋。该团队将不断提高 AlphaProteo 算法的成功率和亲和力,扩大它可以解决的设计问题范围,并与机器学习、结构生物学、生物化学和其他学科的研究人员合作,为社区开发负责任、更全面的蛋白质设计产品。相信 AlphaProteo 将为许多生物应用开辟新的解决方案,例如控制细胞信号传导,成像蛋白质、细胞和组织,赋予各种效应系统目标特异性等等。
- 所属专题:
- 64