您的位置: 首页 > 院士专题 > 专题 > 详情页

Overcoming data barriers in spatial agri-food systems analysis: A flexible imputation framework

克服农业粮食体系空间分析中的数据障碍

关键词:
来源:
Journal of Agricultural Economics
来源地址:
https://onlinelibrary.wiley.com/doi/full/10.1111/1477-9552.12523
类型:
学术文献
语种:
英语
原文发布日期:
2023-01-04
摘要:
Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under-determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充