您的位置: 首页 > 院士专题 > 专题 > 详情页

Plant Disease Detection Using an Electronic Nose

利用电子鼻检测植物病害

关键词:
来源:
2023 IEEE SENSORS 会议
来源地址:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10325015
类型:
会议论文
语种:
英语
原文发布日期:
2023-10-29
摘要:
This paper presents experimental results on differentiating between healthy wheat plants and plants infected with Fusarium Head Blight (FHB) based on sensing the ambient gases in the plant environment using a gravimetric electronic nose enabled by a functionalized capacitive micromachined ultrasonic transducer (CMUT) array and machine learning (ML) algorithms. The CMUT sensor array is functionalized with organic/inorganic materials to capture disease-related volatile signals. The sensor data is processed and analyzed using ML algorithms for accurate plant classification. Experimental results demonstrate the effectiveness of the proposed approach in achieving high accuracy for plant disease detection at the end of the 11th day after plant inoculation.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充