Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical
代谢工程改造谷氨酸棒杆菌高效生产C5二醇平台化合物1,5-戊二醇
- 关键词:
- 来源:
- Advanced Science
- 类型:
- 学术文献
- 语种:
- 英语
- 原文发布日期:
- 2024-12-27
- 摘要:
- The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway. Engineering began with creating a strain capable of producing 5-hydroxyvaleric acid (5-HV), a key precursor to 1,5-PDO, by incorporating enzymes from Pseudomonas putida (DavB, DavA, and DavT) and Escherichia coli (YahK). Two conversion pathways for further converting 5-HV to 1,5-PDO are evaluated, with the CoA-independent pathway—utilizing Mycobacterium marinum carboxylic acid reductase (CAR) and E. coli YqhD—proving greater efficiency. Further optimization continues with chromosomal integration of the 5-HV module, increasing 1,5-PDO production to 5.48 g L−1. An additional screening of 13 CARs identifies Mycobacterium avium K-10 (MAP1040) as the most effective, and its engineered M296E mutant further increases production to 23.5 g L−1. A deep-learning analysis reveals that Gluconobacter oxydans GOX1801 resolves the limitations of NADPH, allowing the final strain to produce 43.4 g L−1 1,5-PDO without 5-HV accumulation in fed-batch fermentation. This study demonstrates systematic approaches to optimizing microbial biosynthesis, positioning C. glutamicum as a promising platform for sustainable 1,5-PDO production.
- 所属专题:
- 173