您的位置: 首页 > 院士专题 > 专题 > 详情页

Molecular characterization of a novel heat shock transcription factor gene TaHsfA2-11 and its overexpression improves thermotolerance in wheat

一种新型热休克转录因子基因TaHsfA2-11的分子特性及其过表达提高了小麦的耐热性

关键词:
来源:
ScienceDirect
来源地址:
https://www.sciencedirect.com/science/article/pii/S0098847223004045
类型:
前沿资讯
语种:
英语
原文发布日期:
2023-12-20
摘要:
High temperature is a major constrait limiting the yield and quality of wheat. Wheat heat shock transcription factor (Hsf) plays important roles in regulating plant response to heat shock. In previous study, we found there are 82 Hsfs in wheat and TaHsfA2–11 expression was obviously upregulated by heat stress. In this study, we aim to investigate TaHsfA2–11 function and regulating mechanism in response to heat shock through genetic transformation into wheat Fielder. Gene expression analyses results showed that TaHsfA2–11 was expressed in all detected tissues and the most highly expressed level was in wheat mature roots. The expression level of TaHsfA2–11 was strongly upregulated by heat shock in wheat leaves. Subcellular localization results represented that TaHsfA2–11 is located to the nucleus. Transgenic wheat seedlings overexpressing TaHsfA2–11 showed stronger thermotolerance than the control Fielder after treated under 50 °C for 12 h. After heat shock, the TaHsfA2–11 overexpressing lines showed increased survival rate, chlorophyll content, POD (Peroxidase) activity, SOD (Superoxide dismutase) activity and photosynthetic rate, and decreased relative electrolyte leakage and MDA (malondialdehyde) content compared with Fielder. The results of RNA-sequence data demonstrated that TaHsfA2–11 can regulate many heat response genes, such as Hsp genes TaHsp16.6 and TaHsp21, ER (Endoplasmic reticulum) stress genes TaBiP2 and TaERDJ3A, photoprotectant for PSII gene TaELIPHV58, flavone biosynthesis related genes TaUGT-2A and TaPMaT, etc after heat stress. These results showed that TaHsfA2–11 can impove thermotolerance perhaps through effecting signal pathway of heat, ER stress, photosynthesis and ROS (Reactive Oxygen Species). The findings will provide useful gene resource for performing genetic modification of wheat thermotolerance in heat-resistant breeding.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充