您的位置: 首页 > 院士专题 > 专题 > 详情页

SCGNet: efficient sparsely connected group convolution network for wheat grains classification

SCGNet:用于小麦籽粒分类的高效稀疏连通群卷积网络

关键词:
来源:
Frontiers
来源地址:
https://www.frontiersin.org/articles/10.3389/fpls.2023.1304962/full
类型:
前沿资讯
语种:
英语
原文发布日期:
2023-12-22
摘要:
Specifically, our proposed model incorporates several modules that enhance information exchange and feature multiplexing between group convolutions. This mechanism enables the network to gather feature information from each subgroup of the previous layer, facilitating effective utilization of upper-layer features. Additionally, we introduce sparsity in channel connections between groups to further reduce computational complexity without compromising accuracy. Furthermore, we design a novel classification output layer based on 3-D convolution, replacing the traditional maximum pooling layer and fully connected layer in conventional convolutional neural networks (CNNs). This modification results in more efficient classification output generation.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充