您的位置: 首页 > 院士专题 > 专题 > 详情页

Semirationally Engineering an Efficient P450 Peroxygenase for Regio- and Enantioselective Hydroxylation of Steroids

半合理地设计一种用于类固醇区域和对映选择性羟基化的高效P450过氧酶

关键词:
来源:
ACS Catalysis
来源地址:
https://pubs.acs.org/doi/10.1021/acscatal.4c06342
类型:
学术文献
语种:
英语
原文发布日期:
2025-02-05
摘要:
Enzymatic direct hydroxylation of unactivated C–H bonds in steroids provides a promising approach to enrich their structural and functional diversity, together with higher physiological and pharmacological activity. Here, we construct an efficient peroxide-driven P450 hydroxylase for the regio- and enantioselective hydroxylation of steroids. The NADH-dependent CYP154C5 monooxygenase is smoothly transformed into its peroxygenase mode by combining the strategies of H2O2 tunnel engineering and the introduction of a catalytic aspartate residue, which avoids the use of expensive nicotinamide cofactors and redox partner proteins. The variant F92A/R114A/E282A/T248D (AAA/T248D) quantitatively converted testosterone and nandrolone into the corresponding 16α-hydroxylation products, showing the best catalytic efficiency (kcat/Km) for testosterone hydroxylation among all known natural and engineered P450 peroxygenases to date. Crystal structural analysis and molecular dynamics simulations suggest that H2O2 tunnel engineering plays a crucial role in promoting the flow of H2O2 into active centers, and the introduced aspartate residue may participate in the activation of H2O2. Moreover, the milligram-scale preparation of 16α-hydroxytestosterone by AAA/T248D gave a substrate conversion rate (>98%) and an isolated yield (90%), suggesting potential for synthetic application. This work not only establishes a feasible semirational approach to engineered non-natural P450 peroxygenases but also provides a potentially practical approach for the enzymatic synthesis of hydroxylated steroid compounds.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充