您的位置: 首页 > 院士专题 > 专题 > 详情页

Two different types of hydrolases co-degrade ochratoxin A in a highly efficient degradation strain Lysobacter sp. CW239

两种不同类型的水解酶在高效降解菌株Lysobacter sp. CW239中共降解赭曲霉毒素A

关键词:
来源:
Journal of Hazardous Materials
来源地址:
https://www.sciencedirect.com/science/article/pii/S0304389424012950?via%3Dihub
类型:
学术文献
语种:
英语
原文发布日期:
2024-07-15
摘要:
Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 μg/L OTA was completely degraded by 1.0 μg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-β-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.
相关推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充