special

您的位置: 首页 > 院士专题 > 专题列表

共检索到1629条,权限内显示50条;

[学术文献 ] A low-cost high-throughput phenotyping system for automatically quantifying foliar area and greenness 进入全文

Applications in Plant Sciences

With modern advances in genetic sequencing technology, plant phenotyping has become a substantial bottleneck in crop improvement programs. Traditionally, researchers have manually measured phenotypic traits to help determine genotype-phenotype relationships, but manual measurements can be time consuming and expensive. Recently, automated phenotyping systems have increased the spatial and temporal density of measurements, but most of these systems are extremely expensive and require specialized expertise. In the present paper, we develop and validate a low-cost, scalable, high-throughput phenotyping (HTP) system for automating the measurement of foliar area and greenness. During a greenhouse experiment on the effects of abiotic stress on Brassica rapa, we collected images of hundreds of plants every hour for over a month with a system that cost approximately US$1000. In comparison with manually acquired images, this HTP system was able to produce similar estimates of foliar area and greenness, developmental trends, and treatment effects. Foliar area was correlated between the two image sets, but greenness was not. These findings highlight the potential of HTP systems built from low-cost hardware and freely available software. Future work can use this system to investigate genotype-environment interactions and the genetic loci underlying morphological changes resulting from abiotic stress.  

[学术文献 ] A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway 进入全文

Front Plant Sci

Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H2O2) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future.

[学术文献 ] Seed priming with brassinolides improves growth and reinforces antioxidative defenses under normal and heat stress conditions in seedlings of Brassica juncea 进入全文

Physiologia Plantarum

Environmental stresses pose a major challenge for plant researchers to fulfill increasing food demand. Researchers are trying to generate high-yielding and stress-tolerant or resistant varieties using classical genetics and modern gene-editing tools; however, both approaches have limitations. Chemical treatments emerged as an alternative to improve yield and impart stress resilience. Brassinosteroids (BRs) are a group of phytohormones that regulate various biological processes, including stress management. With foliar spray methods, BR treatments showed promising results but are not economically feasible. We hypothesize that priming of seeds, which requires lesser amounts of BRs, could be equally effective in promoting growth and stress tolerance. Owing to this notion, we analyzed the impact of priming seeds with selected BRs, namely, 24-epibrassinolide (EBL) and 28-homobrassinolide (HBL), in Brassica juncea under normal and heat shock stress conditions. Seeds primed with BRs and grown until seedlings stage at normal conditions (20℃) were subjected to a heat shock (35℃) for a few hours, relating to what plants experience in natural conditions. Heat shock reduced the growth and biomass with an increased accumulation of reactive oxygen species. As anticipated, BRs treatments significantly improved the growth and physiological parameters with an enhanced antioxidant defense under both conditions. Transcriptional analyses revealed that BRs concomitantly induce growth and oxidative stress-responsive gene expression via the canonical BR-signaling pathway. Transfer of unstressed and heat-shock-treated seedlings to field conditions demonstrated the long-term effectivity of BR-priming. Our results showed seed priming with BRs could improve growth and resilience against heat shock; hence, it appears to be a viable strategy to enhance crop yields and stress tolerance.

[学术文献 ] Genome-wide association study reveals a GLYCOGEN SYNTHASE KINASE 3 gene regulating plant height in Brassica napus 进入全文

Front Plant Sci

Rapeseed (Brassica napus) is an allotetraploid crop that is the main source of edible oils and feed proteins in the world. The ideal plant architecture breeding is a major objective of rapeseed breeding and determining the appropriate plant height is a key element of the ideal plant architecture. Therefore, this study aims to improve the understanding of the genetic controls underlying plant height. The plant heights of 230 rapeseed accessions collected worldwide were investigated in field experiments over two consecutive years in Wuhan, China. Whole-genome resequencing of these accessions yielded a total of 1,707,194 informative single nucleotide polymorphisms (SNPs) that were used for genome-wide association analysis (GWAS). GWAS and haplotype analysis showed that BnaA01g09530D, which encodes BRASSINOSTEROID-INSENSITIVE 2 and belongs to the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family, was significantly associated with plant height in B. napus. Moreover, a total of 31 BnGSK3s with complete domains were identified from B. napus genome and clustered into four groups according to phylogenetic analysis, gene structure, and motif distribution. The expression patterns showed that BnGSK3s exhibited significant differences in 13 developmental tissues in B. napus, suggesting that BnGSK3s may be involved in tissue-specific development. Sixteen BnGSK3 genes were highly expressed the in shoot apical meristem, which may be related to plant height or architecture development. These results are important for providing new haplotypes of plant height in B. napus and for extending valuable genetic information for rapeseed genetic improvement of plant architecture.

[学术文献 ] Morpho-physiological and biochemical responses of Brassica species toward lead (Pb) stress 进入全文

Acta Physiologiae Plantarum

Brassica species, capable of heavy metals (HMs) hyperaccumulation, differ in their ability to accumulate and tolerate metals present in their environment. In this comparative study, the accumulation, morphological, and physiological responses of three Brassica species i.e., Brassica juncea, B. napus, and B. campestris, against lead (Pb) were examined. Plants were grown in pots under greenhouse conditions and subjected to 0, 50, 100, 150 mM concentrations of Pb for 14 days. The study revealed that 150 mM Pb concentration reduced the plant length and biomass in all the species and this decline was more obvious in B. napus. At 100 mM Pb concentration, plant length increased 3.5% in B. juncea, while decreased by 8 and 36% in B. campestris and B. napus, respectively. B. campestris and B. napus suffered from more pronounced Pb-accumulation in the root followed by shoot as compared to B. juncea. Pb-accumulation in 100 mM treated root of B. campestris and B. napus increased 29 and 80%, respectively as compared to B. juncea Pb treated root. Antioxidant enzyme catalase (CAT) activity was increased in B. juncea and B. campestris up to 150 mM concentration, while in B. napus activity of enzyme decreased at 100 and 150 mM Pb concentration. Phenylalanine ammonia-lyase (PAL) and nitrate reductase activity increased at 50 mM, while the polyphenol oxidase (PPO) and nitrite reductase significantly increased at 150 mM. Brassica species also showed more significant accumulation of amino acid, inhibition of proteins and total sugar content at 100 and 150 mM concentrations. Although all species exhibited enhanced antioxidant activity, activation in B. juncea was relatively higher. These results suggest that B. juncea is relatively more tolerant towards Pb stress as compared to B. campestris and B. napus due to reduced metal uptake and enhanced antioxidant enzyme activities.

[学术文献 ] Quantitative trait locus mapping and improved resistance to sclerotinia stem rot in a backbone parent of rapeseed (Brassica napus L.) 进入全文

Front Plant Sci

There are three main challenges to improving sclerotinia stem rot (SSR) resistance in rapeseed (Brassica napus L.). First, breeding materials such as the backbone parents have not been extensively investigated, making the findings of previous studies difficult to directly implement. Second, SSR resistance and flowering time (FT) loci are typically linked; thus, use of these loci requires sacrifice of the rapeseed growth period. Third, the SSR resistance loci in susceptible materials are often neglected, thereby reducing the richness of resistant resources. This study was conducted to investigate the stem resistance, disease index, and FT of a doubled haploid population consisting of 151 lines constructed from the backbone parent 19514A and conventional rapeseed cultivar ZY50 within multiple environments. Quantitative trait locus (QTL) mapping revealed 13 stem resistance QTLs, 9 disease index QTLs, and 20 FT QTLs. QTL meta-analysis showed that uqA04, uqC03.1, and uqC03.2 were repeatable SSR resistance QTLs derived from different parents but not affected by the FT. Based on these three QTLs, we proposed a strategy for improving the SSR resistance of 19514A and ZY50. This study improves the understanding of the resistance to rapeseed SSR and genetic basis of FT and demonstrates that SSR resistance QTLs can be mined from parents with a minimal resistance level difference, thereby supporting the application of backbone parents in related research and resistance improvement.

首页上一页...6789下一页尾页

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充