A detection device for an apnea is provided. The detection device includes a processor, a storage medium, and a transceiver. The transceiver obtains a first unipolar ECG, wherein the first unipolar ECG includes a first data set corresponding to an apnea event and a second data set corresponding to a non-apnea event. The processor accesses and executes a training module and a detection module in the storage medium. The training module uses the first data set and the second data set as training data to train a machine learning model, wherein the training data is a time-domain signal. The detection module obtains a second unipolar ECG of a subject and determines, according to the machine learning model and the second unipolar ECG, whether at least one apnea event is happened on the subject.提供一種基於單極導程心電圖的呼吸暫停的偵測裝置。偵測裝置包括處理器、儲存媒體以及收發器。收發器取得第一單極導程心電圖,其中第一單極導程心電圖包括對應於呼吸暫停事件的第一資料集合以及對應於非呼吸暫停事件的第二資料集合。處理器存取和執行儲存媒體中的訓練模組以及偵測模組。訓練模組將第一資料集合以及第二資料集合作為訓練資料以訓練機器學習模型,其中訓練資料為時域訊號。偵測模組通過收發器取得受試者的第二單極導程心電圖,並且根據機器學習模型以及第二單極導程心電圖判斷受試者是否發生至少一呼吸暫停事件。