您的位置: 首页 > 中文期刊论文 > 详情页

基于Kolmogorov-Arnold网络的节点分类算法

作   者:
袁立宁冯文刚刘钊
作者机构:
中国人民公安大学研究生院中国人民公安大学 国家安全学院中国人民公安大学国家安全学院
关键词:
Kolmogorov-Arnold网络节点分类多层感知机图卷积网络对比学习
期刊名称:
计算机科学与探索
i s s n:
1673-9418
年卷期:
2025 年 19 卷 003 期
页   码:
645-656
摘   要:
多数图深度学习模型通过可学习权重加固定激活函数的方式提取图数据的特征信息,采用不同激活函数时对模型性能有较为显著的影响。针对上述问题,提出了一种基于Kolmogorov-Arnold网络(KAN)的全连接神经网络模型G-KAN,无需特定的激活函数和显式的节点信息传递策略,通过KAN动态学习激活函数,并引入节点相似度引导的对比损失隐式提取原始图特征信息。G-KAN通过线性层将图数据映射到特征空间,通过KAN层提取输入数据中的潜在特征,通过线性层和Softmax函数将KAN层的输出映射为节点标签的概率分布,并引入对比损失对KAN层的输出进行优化,推动高相似度节点彼此接近、低相似度节点彼此远离。在节点分类任务中,G-KAN优于当前较为先进的基线模型,特别是在BlogCatalog数据集上,G-KAN的Micro-F1和Macro-F1相较图卷积网络(GCN)提高了50.42和52.84个百分点。在激活函数对比实验中,引入KAN的方法不仅优于采用不同激活函数的变体,对不同数据集的泛化能力也更强。上述实验结果表明,G-KAN采用的可学习激活函数策略能够提高全连接神经网络的表征能力,使生成的低维节点表示具有更高的区分性。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充