针对污染场地地下水循环井(groundwater circulating well,GCW)的优化设计问题,提出一种基于机器学习多元线性回归(multiple linear regression,MLR)模型的优化设计方法.该方法首先利用有限差分法建立不同条件下单个GCW运行的数值模型,通过运行数值模型,得到不同条件下GCW的运行效果,从而构建数据集;然后利用MLR算法对模型进行训练,构建计算多种GCW运行效果刻画指标的数学模型,并比较各个数学模型的拟合精度,结果显示纵向影响半径(RL)、横向影响半径(R-T)模型的拟合程度较好,具有一定的泛化能力;最后根据机器学习所得的数学模型,对某试验场地GCW进行优化设计,得到最终优化设计方案,通过优化前的设计方案相比,RL、RT指标有了一定的提升,验证了方法的有效性.该研究结果可为GCW前期结构的快速设计提供参考,具有一定的实际意义.