您的位置: 首页 > 中文期刊论文 > 详情页

基于K-medoids聚类算法的多源信息数据集成算法

作   者:
祝鹏郭艳光
作者机构:
内蒙古农业大学计算机技术与信息管理系
关键词:
源域K-medoids聚类算法多源数据交互信息量目标域
期刊名称:
吉林大学学报(理学版)
i s s n:
1671-5489
年卷期:
2023 年 61 卷 003 期
页   码:
665-670
摘   要:
针对因多源信息数据源域相似性较低、不易确定导致的集成难度较大问题,提出一种基于K-medoids聚类算法的集成方法.先将多源数据的聚类过程视为迁移学习过程,确定初始样本的权重值,记录训练样本每次迭代时权重和损失期望值的学习特点,再利用特点参数判定数据属于源域还是目标域;然后将集成算法聚类转化为多样化的域值标记问题,使数据具有聚类特性后,再分别计算源域和目标域中待集成数据间的权重因子,利用权重因子覆盖特性判定二者间的交互信息量,对信息量较高的数据进行集成,以确保集成的成功率.仿真实验结果表明,该算法无论是在稳定、数目较少的数据集,还是在紊乱、数目较多较杂的数据集下,都能实现高效集成,并且二次集成次数较少,整体耗用较低.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充