您的位置: 首页 > 中文期刊论文 > 详情页

高斯过程回归泊松多伯努利衍生滤波器

作   者:
宋营营宋骊平
作者机构:
西安电子科技大学电子工程学院
关键词:
衍生目标高斯过程回归扩展目标跟踪泊松多伯努利
期刊名称:
计算机工程与应用
i s s n:
1002-8331
年卷期:
2023 年 59 卷 022 期
页   码:
84-91
摘   要:
针对伽马高斯逆威舍特混合泊松多伯努利(Gamma Gaussian inverse Wishart mixed Poisson multi-Bernoulli,GGIW-PMB)滤波器无法估计非椭圆形状目标的问题,提出了将泊松多伯努利滤波器与高斯过程回归模型结合的方法,可对非椭圆形状目标进行准确估计.考虑到衍生存在情形下无法有效提取衍生目标及其扩展形状的问题,提出了一种衍生目标检测及建模方法,通过量测数的变化来对衍生事件做出假设,根据真实场景关系计算衍生目标状态,实现衍生目标的检测和跟踪.在泊松多伯努利滤波器的基础上,采用高斯过程回归模型作为量测模型,结合所提衍生模型,提出了基于高斯过程回归的泊松多伯努利衍生(Gaussian process regression Poisson multi-Bernoulli filter with target spawning,GPR-PMBS)滤波器.仿真结果表明,GPR-PMBS滤波器相比于GGIW-PMB滤波器能更为准确地估计非椭圆形状目标,并且在衍生存在的情形下,也可以有效提取出衍生目标及其形状,在有衍生情况的扩展目标跟踪场景中表现出良好性能.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充