您的位置: 首页 > 中文期刊论文 > 详情页

金融学文本大数据挖掘方法与研究进展

作   者:
姚加权张锟澎罗平
作者机构:
暨南大学管理学院
关键词:
机器学习文本大数据深度学习文本分析数据挖掘
期刊名称:
经济学动态
基金项目:
现金流分配的影响因素及其启示
i s s n:
1002-8390
年卷期:
2020 年 04 期
页   码:
143-158
摘   要:
在金融学领域的传统实证研究中,所用数据多局限于财务报表和股票市场数据等结构化数据。而在大数据时代,计算机技术的进步使得数据类型不断丰富,研究者开始将非结构化的文本大数据引入到金融学领域的研究中,其主要包括上市公司披露文本、财经媒体报道、社交网络文本、网络搜索指数以及P2P网络借贷文本等,并对文本的可读性、语气语调、相似性以及语义特征展开研究。本文首先介绍了金融学领域文本大数据挖掘步骤和方法,描述了语料获取、预处理过程、文档表示以及文档的特征抽取;然后根据不同的文本信息来源,梳理了金融学文本大数据的研究进展;最后对未来金融学文本大数据的研究方法和研究内容进行了展望。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充